
© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Beyond PostgreSQL 17: 7 DBA Workarounds
for Enhanced Management

Vibhor Kumar,
Customer Experience Technical Fellow
10/01/2024

©EDB 2024 — ALL RIGHTS RESERVED.

Vibhor Kumar
Customer Experience
Technical Fellow/Advisor

Authored tools -
● edb-ansible, postgres-deployment,

pg_background, efm_extension, edb_user_login,
edb-cloneschema, edb_block_commands…many
more

Expertise:
● Enterprise architecture, cloud technology,

microservices, database technologies (Oracle,
MySQL, PostgreSQL, DB2, EDB Postgres
Advanced Server, MongoDB)

● Security best practices, DevOps, Oracle migration
and transformation, database and platform
performance, and data security and governance,
and building team.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

▪ Number one contributor to Postgres, the fastest-growing and most loved database in
the world

• 3 Core Team members, 7 Committers, 9 Major Contributors, 20 Contributors, #1 site
for desktop downloads

▪ Nearly 800 employees

▪ Over 50,000 Oracle Schema migrations done by our customers (including Financial,
Defence, Health Care, etc.)

▪ EDB Postgres AI

• The industry's first platform that can be deployed as
cloud, software, or physical appliance

• Secure, compliant, and enterprise-grade performance guaranteed

Pride in Postgres

©EDB 2024 — ALL RIGHTS RESERVED.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

LEADING ENTERPRISES WITH COMPLEX, COMPLIANT, AND SCALING DATA NEEDS TRUST EDB

BFSI (BANKING, FINANCIAL
SERVICES, AND INSURANCE)

TECHNOLOGY
VENDORS

TELCO
CSP

(60% of our Top 50)

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

What EDB Offer that is important

• Observability across your entire
hybrid estate, whether is on
premise, private or public cloud

• Create a single source of truth
in an organization across
applications and data

• Enterprise-grade reliability (five
9s), performance, security, and
scalability

• Agility to develop new
applications, including migrating
from legacy infrastructure

• Delivery of innovation with AI and
analytics while maintaining your
enterprise-grade governance,
reliability, security, and scalability
requirements

• Around 600 AI use cases and
initiatives in queue

SINGLE PANE (SPOG) ENTERPRISE GRADE ANALYTICS AND
ARTIFICIAL INTELLIGENCE

©EDB 2024 — ALL RIGHTS RESERVED.

EDB Postgres AI: the solution
to modernize, optimize, and evolve

 SOVEREIGN DATA AND AI PLATFORM

DO MORE WITH YOUR POSTGRES — WHEREVER YOUR DATA IS OR NEEDS TO BE

UNIFIED WORKLOAD MANAGEMENT

SINGLE-PANE-OF-GLASS ADMINISTRATION

HYBRID AND MULTI-CLOUD DEPLOYMENT EXTENSIBILITY

PLATFORM TOOLS AND SERVICES

ARTIFICIAL INTELLIGENCE

GENAI & LLM INTEGRATIONS

ANALYTICAL

HYBRID DATA ESTATE INTELLIGENT
OBSERVABILITY

LAKEHOUSE INTEGRATIONS

TRANSACTIONAL

ENTERPRISE SECURITY

PUBLIC
CLOUD

(MANAGED)

PRIVATE
CLOUD

(SOFTWARE)

ON PREMISES
(APPLIANCE)

MIGRATION
PORTAL

CONTINUOUS
HIGH

AVAILABILITY

BACKUP
AND

RECOVERY

CSP INTEGRATIONS

DEVOPS TOOLING

KUBERNETES TOOLING

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB POSTGRES AI SOLVES DATA AND AI CHALLENGES AT SCALE FOR COMPLEX
AND COMPLIANT INDUSTRIES

MODERNIZE SUPPORT SCALE ENABLE INNOVATION

High performance and reliability
combined with observability and
tuning combine to provide a data
platform that seamlessly scales to
meet the enterprise needs of your
entire organization while
maintaining full control of security,
governance, and compliance

Modernize your data estate onto
Postgres, enabling access to
modern developers, features, and
functionality all backed with the
power of open source and
enhanced by EDB’s enterprise-grade
capabilities

Integrated support across your
entire Postgres estate for modern
analytics and AI capabilities that
enable your developers to deliver
the next wave of innovation while
maintaining enterprise-grade
performance, reliability, security,
governance, and compliance

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB contributions to PG 17 (Released Last Thursday!)
Backup and Recovery

Finished SQL:2023 SQL/JSON
● Support for latest SQL/JSON

Standards

JSON_TABLE
● Easily work with JSON data using

a table like interface

Reduced Memory for Part-wise
JOINs
● Efficiently join large tables using

less memory

NULL Constraint Improvements
● Better execution plans with NULL

constraint handling

Faster Recovery Times with
Incremental Backup

● Quickly recover from
disasters with reduced
downtime by only backing
up what’s changed,
enabling more frequent
backups of large
databases, reducing
recovery times in the event
of a disaster.

Helping EDB customers with
Complex Business Logic
● Simplify complex logic with

improved subtraction support

Convert Physical Replica to
Logical Replica
● Easier to initialize logical

replication for large datasets with
pg_create_subscriber

Business Logic and ReplicationDeveloper Productivity/Flexible PG

Performance Enhancements

©EDB 2024 — ALL RIGHTS RESERVED.

7 DBA Workarounds for Enhanced Management

©EDB 2024 — ALL RIGHTS RESERVED.

I. Zero-Downtime Rolling Major Upgrades

Using Logical Replication

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Zero-Downtime Upgrade Essentials

Key Requirements:
● Near-zero downtime: Measured in milliseconds or seconds.
● No data loss: Maintain complete data integrity and consistency.
● Seamless transition: Support schema changes and ongoing

transactions.

Post-Upgrade Essentials:

● Rollback plan: Ensure the ability to revert to the previous version if
needed.

● Continuous availability: Minimize downtime during rollback.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Popular Production HA Architectures

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Other Production HA Architectures

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

PostgreSQL Upgrade Options

pg_(dump|restore)

● Requires significant downtime.

● Time-consuming, especially for large
databases.

● Rollback can be complex and risky.

pg_upgrade with Standby resync

● Reduces downtime compared to pg_dump/pg_restore.

● Still requires some downtime.

● Upgrade time varies depending on database size.

● Rollback complexity (even with disk snapshots) and
potential data loss are concerns.

©EDB 2024 — ALL RIGHTS RESERVED.

SMALL TITLE: LIGHTBOX FORMAT WITH NON-BINARY HERO AND COPY

Native Logical Replication - An Option For Major
Upgrade

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

PostgreSQL 17 - Native Logical Replication

Key improvements in Native Logical replication

▪ pg_upgrade preserves replication_slot : You no longer need to drop and recreate logical
replication slots when upgrading to a new major version (from 17 onwards). This significantly
reduces downtime and simplifies the upgrade process.

▪ Failover Control using failover slots: Enhanced failover capabilities make logical replication more
resilient in high-availability environments.

▪ pg_createsubscriber Command-line Tool: This new tool streamlines the process of converting a

physical replica into a logical replica, making it easier to set up and manage logical replication

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Native Logical Replication - Use Cases

Major use cases

▪ Selective replication: Microservices, data warehousing, mobile apps

▪ Cross-platform flexibility: Hybrid cloud, version upgrades, different
OSs

▪ Data integration: Multi-tenant apps, data sharing, custom solutions

▪ Real-time pipelines: Change data capture, event-driven systems,
analytics

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Major Upgrades - Logical Replication Perspective

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Logical Replication: Not a Silver Bullet

Schema Changes:

● New tables are not automatically replicated.
● DDL (Data Definition Language) commands and sequences are not replicated.
● DDL changes on the subscriber can disrupt replication.

Replication Management:

● Setting up and managing multiple publications and subscriptions for optimal performance
can be complex.

Replication Direction:

● Logical replication is unidirectional, making rollback more challenging.

Post-Upgrade Reversal:

● Reversing replication after the upgrade and ensuring no data loss adds another layer of
complexity.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Logical Replication: Not a Silver Bullet

Node Consistency:

● Requires careful monitoring of individual node states.
● Manual failover decisions based on node health and data consistency.

Connection Routing:

● Lack of automated connection routing based on a consensus layer.
● Potential for connection issues during the transition.

Conflict Resolution:

● Increased risk of data conflicts due to human error and open connections on the old
system.

● Manual intervention needed to resolve conflicts.

©EDB 2024 — ALL RIGHTS RESERVED.

SMALL TITLE: LIGHTBOX FORMAT WITH FEMALE HERO AND COPY

EDB Postgres Distributed

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Major Upgrades - A PGD Perspective

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Postgres Distributed: A Silver Bullet

Schema Changes:

● New tables get automatically replicated.
● DDL (Data Definition Language) commands and sequences get replicated.
● DDL changes on the subscriber can get synchronized.

Replication Management:

● No need for setting up and managing multiple publications and subscriptions for optimal
performance can be complex.

Replication Direction:

● Logical replication is bi-direction, making rollback more clean and easy.

Post-Upgrade Reversal:

● Simplified reversing replication after the upgrade and ensuring no data loss.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Postgres Distributed: Silver Bullet

Node Consistency:

● PGD Proxy routes connections based on the consistency
● No manual failover decisions based on node health and data consistency. PGD Proxy takes

care of it

Connection Routing:

● Automated connection routing based on a consensus layer using PGD Proxy
● Potential for connection issues during the transition.

Conflict Resolution:

● Many methods are available for conflict resolution.
● Custom methods are allowed

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Postgres Distributed Architecture
Operational Advantages:

● Rolling Upgrades/Patches:
○ Upgrade or patch one node at a time for minimal

downtime.
○ Built-in rollback options for easy recovery.

● Simplified Maintenance:
○ Perform VACUUM FULL and REINDEX operations on

one node at a time without affecting overall
availability.

● Flexible Resource Management:
○ Seamlessly move data to optimized storage with

different IOPS using tablespaces.
○ Easily increase server resources (RAM/CPU) as

needed.
○ Rebuild partitioned tables with zero downtime.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Postgres Distributed Architecture

Advanced Capabilities:

● Connection Routing: Automatic and seamless connection
routing for uninterrupted application access.

● Load Balancing: Distribute read traffic across nodes for
improved performance.

● Selective Data Replication: Replicate only the necessary
data to specific nodes.

● Blue/Green Deployments: Support for blue/green
deployments for risk-free upgrades and testing.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Postgres Distributed

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Postgres Distributed

©EDB 2024 — ALL RIGHTS RESERVED.

II. Listing Objects Dependent on
Procedures/Functions
Using plpgsql_check

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Why DBAs Need to Understand Dependencies
Validate Code Integrity:

● Analyze dependency lists to verify the validity and completeness of
functions/procedures.

● Identify potential issues caused by missing or invalid dependencies.

Assess Change Impact:

● Measure the impact of dropping objects on dependent code.
● Evaluate the effects of modifications to existing objects and their

dependencies.

Understand Relationships:

● Visualize the interdependencies between procedures and functions.
● Identify potential cascading failures or performance bottlenecks.

Proactive Risk Mitigation:

● Pinpoint potential failure points in the application logic.
● Implement safeguards to prevent disruptions caused by object changes.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

plpgsql_check: Ensuring Code Integrity
Installation:

● Install the plpgsql_check extension:
sudo dnf install plpgsql_check_16

● Enable the extension in your database:
/usr/pgsql-16/bin/psql -c "CREATE EXTENSION plpgsql_check;" -d postgres

Key Function: plpgsql_show_dependency_tb

● Lists dependencies for functions/procedures, including:

○ Other functions/procedures

○ Tables

○ Sequences

● Shows the immediate calling function.

● Note: Does not currently show recursive dependencies.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

plpgsql_check: Ensuring Code Integrity

Example
edb=# SELECT * FROM plpgsql_show_dependency_tb('public.test_numeric2'::regproc);
 type | oid | schema | name | params
-----------+-------+--------------+---------------+-------------------
 FUNCTION | 18309 | public | test_numeric1 | (numeric,numeric)
 FUNCTION | 18306 | test_package | test_function | (numeric)
 FUNCTION | 16535 | dbms_output | put_line | (text)
(3 rows)

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

plpgsql_check: Building recursive dependency tree

Introducing get_dependency_tree():
● A custom function built upon plpgsql_show_dependency_tb.
● Provides a hierarchical view of object dependencies.
● Source code available on GitHub:

https://github.com/vibhorkum/EDB-SPL-SQL/blob/main/dependency_tree.sql

Example Usage:

SELECT * FROM get_dependency_tree('your_function_name');

Output:
● A tree-like structure showing the function/procedure and its dependencies.

https://github.com/vibhorkum/EDB-SPL-SQL/blob/main/dependency_tree.sql
https://github.com/vibhorkum/EDB-SPL-SQL/blob/main/dependency_tree.sql

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

plpgsql_check: Building recursive dependency tree

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

plpgsql_check: Beyond Dependency Analysis
Code Quality & Performance:
● Identify and fix compilation errors: plpgsql_check can detect syntax errors and other code issues

before runtime.

postgres=# SELECT * FROM plpgsql_check_function('example01', fatal_errors=>false);
 plpgsql_check_function
--
 error:42703:8:assignment:record "r" has no field "k"
 Context: PL/pgSQL assignment "s := s + r.k"
 error:2F005:control reached end of function without RETURN
 warning extra:00000:3:DECLARE:never read variable "r"
 warning extra:00000:4:DECLARE:never read variable "s"
(5 rows)

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

plpgsql_check: Beyond Dependency Analysis
Code Quality & Performance:
● Profile function/procedure performance: Analyze execution time and identify bottlenecks.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

plpgsql_check: Beyond Dependency Analysis
Code Quality & Performance:
● Get performance improvement tips: Receive warnings and suggestions for optimizing your code.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

plpgsql_check: Beyond Dependency Analysis
Security Enhancement:
● Detect potential SQL injection vulnerabilities: plpgsql_check can help you identify areas in your

code that might be susceptible to SQL injection attacks.

©EDB 2024 — ALL RIGHTS RESERVED.

III. Automated PostgreSQL Tuning

Using EDB Ansible Or edb_pg_tuner

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Why Automate PostgreSQL Tuning?
Challenges of Manual Tuning:
● Dynamic Workloads: Difficult to keep up with constantly

changing workloads and adjust tuning parameters accordingly.
● Scale: Manually tuning numerous databases is time-consuming

and inefficient.
● Deployment Consistency: Ensuring optimal performance for

every deployment requires significant effort.

Benefits of Automation:

● Reduced Manual Effort: Free up DBAs from tedious tuning
tasks.

● Continuous Optimization: Maintain peak performance even as
workloads evolve.

● Reduced Human Error: Eliminate the risk of misconfigurations
and incorrect tuning decisions.

● Improved Performance: Achieve consistent and optimal
performance across all deployments.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Automated PostgreSQL Tuning with TPA

▪ TPA is an orchestration tool that uses Ansible to deploy
Postgres clusters according to EDB's recommendations.

▪ TPA embodies the best practices followed by EDB, informed
by many years of hard-earned experience with deploying and
supporting Postgres.

▪ These recommendations are as applicable to quick testbed
setups as to production environments.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

What can TPA do?

▪ TPA is built around a declarative configuration mechanism that you can use to
describe a Postgres cluster, from its topology right down to the smallest details of its
configuration.

▪ TPA can:
▪ Provision servers (e.g.: AWS EC2 or Docker). Or you can deploy to existing

servers)
▪ Configure the operating system
▪ Install and configure Postgres and associated components (PGD, barman,

pgbouncer, repmgr and various Postgres extensions)
▪ Run automated tests on the cluster after deployments
▪ Deploy future changes to your configuration (e.g., changing Postgres settings,

installing and upgrading packages, adding new servers, and so on)

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

How do I use it?

▪ Configure
▪ Provision
▪ Deploy

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Configuration

▪ You must select an architecture and a platform for the
cluster.

▪ An architecture is a recommended layout of servers and
software to set up Postgres for a specific purpose.

▪ Architectures:
▪ "M1" (Postgres with a primary and streaming

replicas)
▪ "PGD-Always-ON" (EDB Postgres Distributed 5 in an

Always On configuration).

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Configure
tpaexec configure ~/clusters/my-cluster \
--architecture M1 \
--postgresql 16 \
--failover-manager efm \
--platform bare \
--hostnames-from ~/clusters/hostnames.txt

Provision
tpaexec provision ~/clusters/my-cluster

Deploy
tpaexec deploy ~/clusters/my-cluster

Test
tpaexec test ~/clusters/my-cluster -v

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Postgres Tuner Extension

The Challenge: Default PostgreSQL settings are often conservative and
don't fully utilize available resources (CPU, memory, storage).

The Solution: EDB Postgres Tuner automatically optimizes 15+ parameters
based on your system and workload.

Benefits:
● Maximizes resource utilization for improved performance.
● Provides safe and controlled tuning recommendations.
● Offers both automatic and manual tuning options.
● Makes expert tuning accessible to all.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Installation and Configuration

Install the package:

● For RPM-based systems (e.g., Red Hat, CentOS):
sudo dnf -y install edb-pg16-postgres-tuner1

Configure PostgreSQL:

● Edit postgresql.conf:
shared_preload_libraries = 'edb_pg_tuner'

(Add to existing libraries if needed)

● Restart Postgres:
sudo systemctl restart postgresql-16

● Enable the extension:
CREATE EXTENSION edb_pg_tuner;

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Fine-Tuning EDB Postgres Tuner

Customize Tuner Behavior:
● edb_pg_tuner.autotune: Enables automatic application of tuning recommendations.

(Default: false)
● edb_pg_tuner.naptime: Sets the interval (in seconds) between tuning checks.

(Default: 600 seconds / 10 minutes)
● edb_pg_tuner.max_wal_size_limit: Sets an upper limit for the max_wal_size

recommendation. (Default: 0 / no limit)

How to Apply Changes:
● Edit postgresql.conf to modify these parameters.
● Restart the service

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Postgres Tuner: SQL Interface

Get Recommendations:
● Use the edb_pg_tuner_recommendations() function to generate tuning

suggestions.

Default (conf) format: Provides recommendations in
the format used in postgresql.conf.

sql format: Generates ALTER SYSTEM commands
that can be directly executed.

©EDB 2024 — ALL RIGHTS RESERVED.

IV. Online VACUUM FULL

Using pg_squeeze/pg_repack

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Online VACUUM FULL: A DBA's Dream

The Problem with Traditional VACUUM FULL:
● Requires an exclusive lock on the table.
● Leads to significant downtime, especially for large tables.
● Disrupts ongoing operations and affects application availability.

Why DBAs Want Online VACUUM FULL:
● Eliminate Downtime: Perform VACUUM FULL without blocking other

operations.
● Maximize Availability: Keep applications running smoothly during

maintenance.
● Reduce Maintenance Windows: Perform table rebuilds during peak hours

without disruption.
● Improve User Experience: Ensure uninterrupted access to data for users.
● Simplify Operations: Reduce the complexity of scheduling maintenance

tasks.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

pg_squeeze: Online Table Reorganization Made Easy

What it does:
● Removes bloat (unused space) from tables.
● Optionally reorders rows based on an index (like CLUSTER, but online).
● A modern alternative to pg_repack.

Why it's better:
● Server-side only: Simpler to use and configure than pg_repack.
● Background workers: Enables automated, unattended operation.
● Leverages PostgreSQL advancements: Uses logical decoding for efficient

change tracking.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

pg_squeeze: Online Table Reorganization Made Easy

Install the package:
sudo dnf -y install pg_squeeze_16

Configure PostgreSQL:
● Edit postgresql.conf:

shared_preload_libraries = 'pg_squeeze'
wal_level = logical
max_replication_slots = 1 # ... or add 1 to the current value
(Add pg_squeeze to existing libraries if needed)

● Restart Postgres:
sudo systemctl restart postgresql

● Enable the extension:
CREATE EXTENSION pg_squeeze;

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

pg_squeeze: Online Table Reorganization Made Easy

How to schedule
postgres=# INSERT INTO squeeze.tables (tabschema, tabname, schedule)
 VALUES ('public', 'foo', ('{30}', '{22}', NULL, NULL, '{3, 5}'));
INSERT 0 1

Schedule format:
CREATE TYPE schedule AS (
 minutes minute[],
 hours hour[],
 days_of_month dom[],
 months month[],
 days_of_week dow[]
);

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

pg_squeeze: Ad Hoc Table Reorganization

On-Demand Optimization:
● pg_squeeze allows you to reorganize tables manually, without prior registration or bloat checks.
● Useful for immediate optimization of specific tables.

squeeze_table() Function:

squeeze.squeeze_table(
 tabschema name,
 tabname name,
 clustering_index name DEFAULT NULL,
 rel_tablespace name DEFAULT NULL,
 ind_tablespaces name[] DEFAULT NULL
)

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

pg_squeeze: Ad Hoc Table Reorganization

Parameters:
● tabschema, tabname: Specify the schema and name of the table.
● clustering_index: Optionally cluster rows based on this index.
● rel_tablespace: Move the table to a different tablespace.
● ind_tablespaces: Move indexes to specific tablespaces.

Example:
SELECT squeeze.squeeze_table('public', 'pgbench_accounts');

Log table

©EDB 2024 — ALL RIGHTS RESERVED.

V. Postgres Workload Analysis (AWR-like)

Using edb-pwr

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Postgres Performance Insights: Beyond Basic Monitoring

Why Basic Monitoring Is Not Enough:
● Provides a limited view of database activity.
● Doesn't offer deep insights into performance bottlenecks.
● Makes it difficult to diagnose complex performance issues.

What DBAs Need for Effective Performance
Management:
● Detailed Performance Data: Granular information about wait

events, resource consumption, and execution statistics.
● Historical Trends: Ability to analyze performance over time to

identify patterns and anomalies.
● Query-Level Insights: Understanding the performance of

individual SQL queries.
● Proactive Monitoring: Early detection of potential performance

issues.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

PWR: AWR-like Reporting for PostgreSQL

What is PWR?
● A Python-based tool for generating detailed PostgreSQL workload

reports.
● Provides insights similar to Oracle's AWR reports.
● Output formats: HTML, Markdown, DOCX, and PDF.

Key Features:
● Comprehensive Data: Captures wait events, SQL performance

statistics, and more.
● Historical Analysis: Enables analysis of workload trends over time.
● Flexible Deployment: Runs on any machine with access to the

PostgreSQL server.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

PWR: AWR-like Reporting for PostgreSQL

For more information -
https://www.enterprisedb.com/docs/pwr/latest/

https://www.enterprisedb.com/docs/pwr/latest/

©EDB 2024 — ALL RIGHTS RESERVED.

VI. Job Scheduler

Using pg_cron

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Why DBAs Love In-Database Job Schedulers

Centralized Management:
● Schedule and manage all database tasks in one place.
● No need to rely on external tools or cron jobs.
● Easier to track and monitor scheduled jobs.

Increased Reliability:
● Jobs run even if the database server is restarted.
● Ensures tasks are executed on time, regardless of external

factors.
● Built-in error handling and logging for improved reliability.

Enhanced Security:
● Jobs run with database user privileges for better security control.
● No need to grant OS-level access for scheduled tasks.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Why DBAs Love In-Database Job Schedulers

Improved Performance:
● Jobs execute within the database environment, reducing

overhead.
● Direct access to database objects for efficient task execution.

Simplified Maintenance:
● Easier to manage and update scheduled tasks within the

database.
● Streamlined deployment of database changes and updates.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

pg_cron: Effortless Job Scheduling Within PostgreSQL

What is pg_cron?
● An extension that brings cron-like job scheduling to PostgreSQL (10+).
● Schedule SQL commands directly within the database.

Key Features:
● Familiar Syntax: Uses standard cron expressions for easy scheduling.
● Second-Level Precision: Schedule jobs down to the second.
● End-of-Month Scheduling: Supports '$' to specify the last day of the month.
● Job Queuing: Ensures jobs run sequentially, even if delayed.
● Parallel Execution: Runs multiple jobs concurrently.

Cron Syntax:
● *: Run every time period (e.g., every minute, every hour).
● Specific number: Run only at that specific time (e.g., at 10 minutes past the

hour).
● Example: 0 0 * * * (run every day at midnight)

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Installing and Configuring pg_cron

Installation:
sudo yum install -y pg_cron_16

Configuration (postgresql.conf):
shared_preload_libraries = 'pg_cron' # Load pg_cron on startup
cron.database_name = 'postgres' # Optionally specify the database (default: postgres)
cron.timezone = 'PRC' # Optionally specify the timezone (default: GMT)

Restart Postgres:
sudo systemctl restart postgresql

Enable the extension:
 CREATE EXTENSION pg_cron;
 GRANT USAGE ON SCHEMA cron TO <user>; -- Optionally grant usage to other users

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Installing and Configuring pg_cron

Configure Job Execution:
● Enable local connections in pg_hba.conf or use .pgpass for authentication.
● Alternatively, use background workers:

cron.use_background_workers = on
max_worker_processes = 20 # Adjust as needed

Schedule & View Active Jobs:

©EDB 2024 — ALL RIGHTS RESERVED.

VII. Cross-Environment Schema/Data Cloning

Using pg_dump/process or EDB Clone Schema

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Schema Cloning: Secret Weapon for Efficiency and Agility

What is Schema Cloning?
● Creating an exact copy of a database schema (tables, views, functions, etc.) without the associated data.

Why DBAs Need a Schema Cloning Tool:
● Multi-tenant use case:

○ Onboarding new tenants efficiently.
● Rapid Development and Testing:

○ Quickly create new environments for developers to test code changes without impacting production.
○ Experiment with schema modifications in a safe environment.

● Simplified Deployment:
○ Stage schema changes in a test environment before rolling them out to production.
○ Reduce downtime and risk associated with schema migrations.

● Training and Education:
○ Provide trainees with a realistic database environment for practice and learning.

● Security and Compliance:
○ Create isolated environments for security testing and vulnerability assessments.
○ Comply with data privacy regulations by removing sensitive data from test environments.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Cross-Environment Schema Cloning: Methods and Tools

Many Options for data cloning
● Native Logical Replication:

○ Replicate data at the logical level (using SQL statements).
○ Fine-grained control over what gets replicated (tables, schemas, etc.).
○ Minimal impact on the source database.

● pg_dump/pg_restore:
○ Create a consistent backup of the source database using pg_dump.
○ Restore the backup on the target environment using pg_restore.
○ Suitable for smaller databases or when a full copy is needed.

● Storage Snapshots:
○ Create a point-in-time snapshot of the storage volume containing the database.
○ Mount the snapshot on the target environment.
○ Fast and efficient for large databases.
○ May require storage-level support.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Cross-Environment Schema Cloning: Methods and Tools

Why Schema Cloning Can Be Tricky:
● More Than Just Tables: Schemas include tables, functions, procedures,

triggers, and more.
● Dependencies: Objects often depend on each other; cloning must maintain

these relationships.
● Data Integrity: Parent-child relationships and constraints must be

preserved.
● Cross-Schema Dependencies: Objects may depend on objects in other

schemas.

Limited Options for Cloning to a Different Schema:
● pg_dump -s doesn't support renaming the target schema.
● Manual scripting can be complex and error-prone.
● Third-party tools might be needed for advanced scenarios.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Schema Cloning with pg_dump: Three-Step Approach

Three Steps Without Changing Schema name
● pg_dump Commands -

pg_dump --schema=public --section=pre-data postgres | psql <options>
pg_dump --schema=public --section=data postgres | psql <options>
pg_dump --schema=public --section=post-data postgres | psql <options>

● Or Take schema backup in custom/tar/dir backup and use pg_restore

pg_dump --schema=public -Fd --section=pre-data --file=<backup_name>
postgres

pg_restore --schema=public --section=pre-data <backup_name> | psql
<options>
pg_restore --schema=public --section=data <backup_name> | psql
<options>
pg_restore --schema=public --section=post-data <backup_name> | psql
<options>

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Schema Cloning with pg_dump and pg_restore

However for restoring with different schema name
● Requires using string manipulation tools like sed, awk or custom tools using python or other language

pg_dump --schema=public --section=pre-data postgres | sed 's/original_schema_name/new_schema_name/g' |
psql <options>
pg_dump --schema=public --section=data postgres | sed 's/original_schema_name/new_schema_name/g' | psql
<options>
pg_dump --schema=public --section=post-data postgres | sed 's/original_schema_name/new_schema_name/g'|
psql <options>

● Or Take schema backup in custom/tar/dir backup and use pg_restore

pg_dump --schema=public -Fd --section=pre-data --file=<backup_name> postgres

pg_restore --schema=public --section=pre-data <backup_name> | sed
's/original_schema_name/new_schema_name/g'| psql <options>
pg_restore --schema=public --section=data <backup_name> | sed 's/original_schema_name/new_schema_name/g'|
psql <options>
pg_restore --schema=public --section=post-data <backup_name> | sed
's/original_schema_name/new_schema_name/g'| psql <options>

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Schema Cloning via Snapshots

Create a Volume Snapshot:
● Take a point-in-time snapshot of the storage volume containing your PostgreSQL database.

Example using Google Cloud:
gcloud compute disks snapshot <disk-name> \
 --snapshot-names=<snapshot-name> \
 --zone=<zone>

Restore the Snapshot:
● Create a new Persistent Disk from the snapshot.

Example using Google Cloud:
gcloud compute disks create <new-disk-name> \
 --source-snapshot=<snapshot-name> \
 --zone=<zone>

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Schema Cloning via Snapshots

Mount and Access:
● Attach the new disk to a VM instance.
● Access the PostgreSQL database on the new disk.

Rename the Schema:
● Use ALTER SCHEMA to rename the schema to the desired target name.

Example:
ALTER SCHEMA <original_schema_name> RENAME TO <new_schema_name>;

(Optional) Export the Schema:

● Use pg_dump/pg_restore for export and restore of renamed schema in other environments.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Clone Schema: Effortless Schema Cloning

Simplified Schema Cloning:
● Copy schemas within the same database or across different databases.
● Works with local and remote databases, even across clusters.

Flexible Source and Target:
● Clone from and to:

○ The same database
○ Different databases in the same cluster
○ Databases in separate clusters on different hosts

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Setting Up EDB Clone Schema

Install Extensions:
CREATE EXTENSION postgres_fdw SCHEMA public;
CREATE EXTENSION dblink SCHEMA public;
CREATE EXTENSION adminpack;

Modify postgresql.conf:
 shared_preload_libraries =
'$libdir/dbms_pipe,$libdir/dbms_aq,$libdir/parallel_clone'

Install PL/Perl:
CREATE TRUSTED LANGUAGE plperl;

Install EDB Clone Schema:
CREATE EXTENSION parallel_clone SCHEMA public;
CREATE EXTENSION edb_cloneschema;

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Clone Schema: In Action

Create a Foreign Data Wrapper:
● Establish a connection to the source or target

database.

CREATE SERVER local_server FOREIGN DATA WRAPPER
postgres_fdw
 OPTIONS(
 host '/tmp',
 port '5444',
 dbname 'edb'
);
CREATE USER MAPPING FOR enterprisedb SERVER
local_server
 OPTIONS (
 user 'enterprisedb',
 password 'E68123'
);

Clone schema within database

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

EDB Clone Schema: In Action

Clone remote schema

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Thank you.
LinkedIN Blog

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Thank you.

